Fraktal w znaczeniu potocznym oznacza zwykle obiekt samopodobny (tzn. taki, którego części są podobne do całości) albo „nieskończenie złożony”, ukazujący coraz bardziej złożone detale w dowolnie wielkim powiększeniu. Ze względu na olbrzymią różnorodność przykładów matematycy obecnie unikają podawania ścisłej definicji i proponują określać fraktal jako zbiór, który posiada wszystkie poniższe charakterystyki albo przynajmniej ich większość:
Na przykład linia prosta na płaszczyźnie jest formalnie samopodobna, ale brak jej pozostałych cech i zwyczajowo nie uważa się jej za fraktal. Z drugiej strony, zbiór Mandelbrota ma wymiar Hausdorffa równy 2, taki sam jak jego wymiar topologiczny. Jednak pozostałe cechy wskazują, że jest to fraktal. Wiele fraktali ma niecałkowity wymiar Hausdorffa, co wyjaśnia etymologię tej nazwy.
Pojęcie fraktala zostało wprowadzone do matematyki przez Benoît Mandelbrota w latach 70. XX wieku. Odkryty przez niego zbiór Mandelbrota nie był jednak pierwszym przykładem fraktala. Wcześniej istniała już cała gama zbiorów o niecałkowitym wymiarze Hausdorffa, postrzeganych jednak głównie jako kontrprzykłady pewnych twierdzeń. Bardziej systematycznie fraktalami zajmowała się geometryczna teoria miary, mająca swoje początki w pracach Constantina Carathéodory’ego i Felixa Hausdorffa.
Szczególnymi fraktalami – nie nazywając ich po imieniu – zajmowali się Georg Cantor, Giuseppe Peano, Wacław Sierpiński, Paul Lévy, a także Donald Knuth. Szczególny wkład w rozwój geometrycznej teorii miary wniósł Abraham Bezikowicz, który skonstruował również wiele konkretnych fraktali o paradoksalnych własnościach. Również zbiór Julii, ściśle związany ze zbiorem Mandelbrota, był badany w latach 20. zeszłego wieku. Mandelbrot, używając komputera do wizualizacji, uczynił z fraktali przedmiot intensywnych badań. O ważności tego zagadnienia zadecydowały zastosowania w różnych dziedzinach, zwłaszcza poza matematyką, np. obecnie prawie każdy telefon komórkowy korzysta z wbudowanej anteny fraktalnej. Liczne odpowiedniki fraktali istnieją też w naturze.